skip to main content


Search for: All records

Creators/Authors contains: "Huang, Yongjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A new method that automatically determines the modality of an observed particle size distribution (PSD) and the representation of each mode as a gamma function was used to characterize data obtained during the High Altitude Ice Crystals and High Ice Water Content (HAIC-HIWC) project based out of Cayenne, French Guiana, in 2015. PSDs measured by a 2D stereo probe and a precipitation imaging probe for particles with maximum dimension ( D max ) > 55 μ m were used to show how the gamma parameters varied with environmental conditions, including temperature ( T ) and convective properties such as cloud type, mesoscale convective system (MCS) age, distance away from the nearest convective peak, and underlying surface characteristics. Four kinds of modality PSDs were observed: unimodal PSDs and three types of multimodal PSDs (Bimodal1 with breakpoints 100 ± 20 μ m between modes, Bimodal2 with breakpoints 1000 ± 300 μ m, and Trimodal PSDs with two breakpoints). The T and ice water content (IWC) are the most important factors influencing the modality of PSDs, with the frequency of multimodal PSDs increasing with increasing T and IWC. An ellipsoid of equally plausible solutions in ( N o – λ–μ ) phase space is defined for each mode of the observed PSDs for different environmental conditions. The percentage overlap between ellipsoids was used to quantify the differences between overlapping ellipsoids for varying conditions. The volumes of the ellipsoid decrease with increasing IWC for most cases, and ( N o – λ–μ ) vary with environmental conditions related to distribution of IWC. HIWC regions are dominated by small irregular ice crystals and columns. The parameters ( N o – λ–μ ) in each mode exhibit mutual dependence. 
    more » « less
  2. Abstract. Secondary ice production (SIP) is an important physicalphenomenon that results in an increase in the ice particle concentration and cantherefore have a significant impact on the evolution of clouds. In thisstudy, idealized simulations of a mesoscale convective system (MCS) wereconducted using a high-resolution (250 m horizontal grid spacing) mesoscalemodel and a detailed bulk microphysics scheme in order to examine theimpacts of SIP on the microphysics and dynamics of a simulated tropical MCS.The simulations were compared to airborne in situ and remote sensing observationscollected during the “High Altitude Ice Crystals – High Ice Water Content”(HAIC-HIWC) field campaign in 2015. It was found that the observed high icenumber concentration can only be simulated by models that include SIPprocesses. The inclusion of SIP processes in the microphysics scheme is crucialfor the production and maintenance of the high ice water content observed intropical convection. It was shown that SIP can enhance the strength of theexisting convective updrafts and result in the initiation of new updraftsabove the melting layer. Agreement between the simulations and observationshighlights the impacts of SIP on the maintenance of tropical MCSs in natureand the importance of including SIP parameterizations in models. 
    more » « less
  3. Abstract. High ice water content (HIWC) regions in tropical deep convective clouds, composed of high concentrations of small ice crystals, were not reproduced by Weather Research and Forecasting (WRF) model simulations at 1 km horizontal grid spacing using four different bulk microphysics schemes (i.e., the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme and the Predicted Particle Properties (P3) scheme with one- and two-ice options) for conditions encountered during the High Altitude Ice Crystals (HAIC) and HIWC experiment. Instead, overestimates of radar reflectivity and underestimates of ice number concentrations were realized. To explore formation mechanisms for large numbers of small ice crystals in tropical convection, a series of quasi-idealized WRF simulations varying the model resolution, aerosol profile, and representation of secondary ice production (SIP) processes are conducted based on an observed radiosonde released at Cayenne during the HAIC-HIWC field campaign. The P3 two-ice category configuration, which has two “free” ice categories to represent all ice-phase hydrometeors, is used. Regardless of the horizontal grid spacing or aerosol profile used, without including SIP processes the model produces total ice number concentrations about 2 orders of magnitude less than observed at −10 ∘C and about an order of magnitude less than observed at −30 ∘C but slightly overestimates the total ice number concentrations at −45 ∘C. Three simulations including one of three SIP mechanisms separately (i.e., the Hallett–Mossop mechanism, fragmentation during ice–ice collisions, and shattering of freezing droplets) also do not replicate observed HIWCs, with the results of the simulation including shattering of freezing droplets most closely resembling the observations. The simulation including all three SIP processes produces HIWC regions at all temperature levels, remarkably consistent with the observations in terms of ice number concentrations and radar reflectivity, which is not replicated using the original P3 two-ice category configuration. This simulation shows that primary ice production plays a key role in generating HIWC regions at temperatures <-40 ∘C, shattering of freezing droplets dominates ice particle production in HIWC regions at temperatures between −15 and 0 ∘C during the early stage of convection, and fragmentation during ice–ice collisions dominates at temperatures between −15 and 0 ∘C during the later stage of convection and at temperatures between −40 and −20 ∘C over the whole convection period. This study confirms the dominant role of SIP processes in the formation of numerous small crystals in HIWC regions. 
    more » « less
  4. Abstract High Ice Water Content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana in 2015. Observations from in-situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2-D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter ( MMD ), ice water content ( IWC ), and total number concentration ( N t ) for particles with maximum dimension ( D max ) > 55 μm vary with environmental conditions, temperature ( T ), and convective properties such as vertical velocity ( w ), MCS age, distance away from convective peak ( L ), and surface characteristics. IWC is significantly correlated with w , whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m -3 , but decreases with IWC when IWC > 0.5 g m -3 for -15 °C ≤ T ≤ -5 °C. Trends also depend on environmental conditions, such as presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWC s decrease with increasing L at lower T . The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T . The strength of correlation between IWC and N t increases as T decreases. 
    more » « less
  5. Abstract

    Planetary boundary layer (PBL) schemes parameterize unresolved turbulent mixing within the PBL and free troposphere (FT). Previous studies reported that precipitation simulation over the Amazon in South America is quite sensitive to PBL schemes and the exact relationship between the turbulent mixing and precipitation processes is, however, not disentangled. In this study, regional climate simulations over the Amazon in January–February 2019 are examined at process level to understand the precipitation sensitivity to PBL scheme. The focus is on two PBL schemes, the Yonsei University (YSU) scheme, and the asymmetric convective model v2 (ACM2) scheme, which show the largest difference in the simulated precipitation. During daytime, while the FT clouds simulated by YSU dissipate, clouds simulated by ACM2 maintain because of enhanced moisture supply due to the enhanced vertical moisture relay transport process: (a) vertical mixing within PBL transports surface moisture to the PBL top, and (b) FT mixing feeds the moisture into the FT cloud deck. Due to the thick cloud deck over Amazon simulated by ACM2, surface radiative heating is reduced and consequently the convective available potential energy is reduced. As a result, precipitation is weaker from ACM2. Two key parameters dictating the vertical mixing are identified,p, an exponent determining boundary layer mixing andλ,a scale dictating FT mixing. Sensitivity simulations with alteredp,λ, and other treatments within YSU and ACM2 confirm the precipitation sensitivity. The FT mixing in the presence of clouds appears most critical to explain the sensitivity between YSU and ACM2.

     
    more » « less
  6. Abstract. Regions with high ice water content (HIWC), composed of mainly small ice crystals, frequently occur over convective clouds in the tropics. Such regions can have median mass diameters (MMDs) <300 µm and equivalent radar reflectivities <20 dBZ. To explore formation mechanisms for these HIWCs, high-resolution simulations of tropical convective clouds observed on 26 May 2015 during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign based out of Cayenne, French Guiana, are conducted using the Weather Research and Forecasting (WRF) model with four different bulk microphysics schemes: the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme, and the Predicted Particle Properties (P3) scheme with one- and two-ice options. The simulations are evaluated against data from airborne radar and multiple cloud microphysics probes installed on the French Falcon 20 and Canadian National Research Council (NRC) Convair 580 sampling clouds at different heights. WRF simulations with different microphysics schemes generally reproduce the vertical profiles of temperature, dew-point temperature, and winds during this event compared with radiosonde data, and the coverage and evolution of this tropical convective system compared to satellite retrievals. All of the simulations overestimate the intensity and spatial extent of radar reflectivity by over 30 % above the melting layer compared to the airborne X-band radar reflectivity data. They also miss the peak of the observed ice number distribution function for 0.1 more » « less
  7. Abstract

    Ensemble clustering analysis was performed to explore the role of the initial hurricane vortex‐scale wind structure in the prediction of the intensification of Hurricane Patricia (2015). Convection‐allowing ensemble forecasts were classified into spin‐down (SPD) and spin‐up (SPU) groups. Specifically, 10 members with an intensification rate >0 m/s and 10 members with an intensification rate <0 m/s for the first 6 hr were defined as the SPD and SPU members. The result showed that the tangential winds outside the inner‐core region in the SPD members were weaker compared to the SPU members. Additionally, the SPD members had a weaker inflow near the surface and a weaker outflow between the heights of 8 and 12 km than the SPU members. The SPU members showed more significant azimuthal asymmetry than the SPD members in the surface, tangential and radial winds. Wavenumber analysis showed that the low wavenumber components dominated the differences between the SPD and SPU members. Numerical experiments were conducted to test the hypothesis generated by the clustering analysis. It was found that the storm's maximum wind speed (MWS) intensified during the first 6 hr of the model forecast if only the low wavenumber structure in the SPU members was included in the initial conditions, whereas it decayed during the first 6 hr if only the low wavenumber structure in the SPD members was included. This result confirms that the low wavenumber structure of the initial wind analyses was important in predicting the intensity changes of Hurricane Patricia (2015).

     
    more » « less